Corrected-T confidence intervals based on ResamplingSubsampling
.
A heuristic factor is applied to correct for the dependence between the iterations.
The confidence intervals tend to be liberal.
Parameters
Only those from MeasureAbstractCi
.
References
Nadeau, Claude, Bengio, Yoshua (1999). “Inference for the generalization error.” Advances in neural information processing systems, 12.
Super classes
mlr3::Measure
-> mlr3inferr::MeasureAbstractCi
-> MeasureCiCorrectedT
Methods
Method new()
Creates a new instance of this R6 class.
Usage
MeasureCiCorrectedT$new(measure)
Arguments
measure
(
Measure
orcharacter(1)
)
A measure of ID of a measure.
Examples
m_cort = msr("ci.cor_t", "classif.acc")
m_cort
#> <MeasureCiCorrectedT:classif.acc>: Corrected-T CI
#> * Packages: mlr3, mlr3measures, mlr3inferr
#> * Range: [0, 1]
#> * Minimize: FALSE
#> * Average: custom
#> * Parameters: alpha=0.05, within_range=TRUE
#> * Properties: primary_iters
#> * Predict type: response
rr = resample(
tsk("sonar"),
lrn("classif.featureless"),
rsmp("subsampling", repeats = 10)
)
rr$aggregate(m_cort)
#> classif.acc classif.acc.lower classif.acc.upper
#> 0.4898551 0.3408775 0.6388327