The conservative-z confidence intervals based on the ResamplingPairedSubsampling.
Because the variance estimate is obtained using only n / 2 observations, it tends to be conservative.
This inference method can also be applied to non-decomposable losses.
Parameters
Only those from MeasureAbstractCi.
References
Nadeau, Claude, Bengio, Yoshua (1999). “Inference for the generalization error.” Advances in neural information processing systems, 12.
Super classes
mlr3::Measure -> mlr3inferr::MeasureAbstractCi -> MeasureCiConZ
Methods
Method new()
Creates a new instance of this R6 class.
Usage
MeasureCiConZ$new(measure)Arguments
measure(
Measureorcharacter(1))
A measure of ID of a measure.
Examples
ci_conz = msr("ci.con_z", "classif.acc")
ci_conz
#> <MeasureCiConZ:classif.acc>: Conservative-Z CI
#> * Packages: mlr3, mlr3measures, mlr3inferr
#> * Range: [0, 1]
#> * Minimize: FALSE
#> * Average: custom
#> * Parameters: alpha=0.05, within_range=TRUE
#> * Properties: primary_iters
#> * Predict type: response