Corrected-T confidence intervals based on ResamplingSubsampling
.
A heuristic factor is applied to correct for the dependence between the iterations.
The confidence intervals tend to be liberal.
This inference method can also be applied to non-decomposable losses.
Parameters
Only those from MeasureAbstractCi
.
References
Nadeau, Claude, Bengio, Yoshua (1999). “Inference for the generalization error.” Advances in neural information processing systems, 12.
Super classes
mlr3::Measure
-> mlr3inferr::MeasureAbstractCi
-> MeasureCiCorrectedT
Methods
Method new()
Creates a new instance of this R6 class.
Usage
MeasureCiCorrectedT$new(measure)
Arguments
measure
(
Measure
orcharacter(1)
)
A measure of ID of a measure.
Examples
m_cort = msr("ci.cor_t", "classif.acc")
m_cort
#>
#> ── <MeasureCiCorrectedT> (classif.acc): Corrected-T Interval ───────────────────
#> • Packages: mlr3, mlr3measures, and mlr3inferr
#> • Range: [0, 1]
#> • Minimize: FALSE
#> • Average: custom
#> • Parameters: alpha=0.05, within_range=TRUE
#> • Properties: primary_iters
#> • Predict type: response
#> • Predict sets: test
#> • Aggregator: mean()
rr = resample(
tsk("sonar"),
lrn("classif.featureless"),
rsmp("subsampling", repeats = 10)
)
rr$aggregate(m_cort)
#> classif.acc classif.acc.lower classif.acc.upper
#> 0.4898551 0.3408775 0.6388327